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electrically after detection of the light iptensity. Computer simulations
and experiments with e-beam fabricated holograms designed to code an
associative memory and a winner-take-all network reveal a host of
technical problems resulting in a limited achievable accuracy for the
connection weight.
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1 Summary

In this work, the investigators explored the area of neural-nets for object recognition
and also investigated hardware issues in the optical implementation of neural nets.
The approach underlying the design of networks was that of optimization theory to
both specify the problem and the network for its solution. These networks differ con-
siderably from simple pattern matchers (such as the Hopfield content-addresssable
Memory) where an iconic version of the pattern itself is stored. Instead, the net-
work implements a form of model matching in which the model base is organized as
structured graphs, the input data is organized, again by the optimization procedure,
into similarly structured graphs by the neural net, and recognition is accomplished
by a form of graph matching. The model base is organized hierarchically in that
both compositional (whole-part) and specialization (class membersh'p) notions are
captured by sparse matrices which serve as pointer structures in the objective func-
tions. This notion of design allows for a uniform style of addressing both low-level
visual problems and more traditional high-level recognition problems. Our main ex-
periments were conducted in visual domains involving the recognition of simple stick
figures. One version in which the coding of input data into structured graphs was
done as a preprocess achieved considerable success. A more ambitous experiment
in which this "perceptual organization" is done as part of the optimization achieved
limited results, but served to highlight areas for further progress. Though learning
was a subsidiary goal here, progress was made in the areas of CMAC contollers and
delineations of learning tasks for the graph matching circuits mentioned above. Also,
earlier work involving aspects of more traditional associative memories was contin-
ued, with progress achieved in the specification of optimal architectures and objective
functions for outer-product style memories. Optical implementations were concerned
mainly with the problem of implementing ever more general interconnect patterns.
The main problem here is to use optics to form a fixed interconnection network be-
tween layers of 2-D nodes (neurons). Two means of using spatial multiplexing to
effect a 4-D interconnect between two 2-D node planes are used: multifaceted holo-
grams and multichannel incoherent imaging systems. Nonlinearities are implemented
electrically after detection of the light intensity. Computer simulations and exper-
iments with e-beam fabricated holograms designed to code an associative memory
and a winner-take-all network reveal so far a host of technical problems resulting in
a limited achievable accuracy for the connection weight.
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2 Introduction

The following is a summary of progress accomplished over the first year of the two-
year grant period. A number of papers, Tech reports, etc. are referenced at the end
of this 1-year progress report.

The overall theme of the project was the investigation of issues in the organization
of visual memory. The project was pursued at the theoretical level as well as at the
level of hardware organization, where issues in the optoelectronic implementation of
these memorie were pursued.

This project grew out of earlier work in which an approach to object recognition
as an associative memory problem was pursued. The big problem with this earlier
approach is that objects must be recognized regardless of changes in position, ro-
tation, scaling, and a host of other deformations. One may store iconic patterns
directly in a memory and design such invariances directly into the connection pat-
tern, but the circuits quickly become complicated. We follow the approach taken
in traditional computer vision systems and store relational models instead of iconic
models into the circuit, and demand that the input data itself be organized into such
a relational structure and optimally matched to the "nearest" model. Relational
models are designed to automatically capture the desired invariances; the perceptual
organization of input data into relational structure proceeds simultaneously with
the matching process. Like some associative memory approaches, this one also uses
objective functions for specification of the problem and design of the circuit. The
optical implmentation aspect is largely independent of the distinction between the
associative memory approach and the optimiing graph matching approach. In each
case, the main task is to use the capabiliies of optics and electronics to for general
interconnect patterns and implemnbt nonlinearities.

Below we list a summary of accomplishments completed during the first year of
the grant period. This is follwed by a more detailed discussion.

3 Summary of Completed Research

Below is a succint summary of accomplishments of the first year. Each item is followed
by a reference to an appropriate paper or technical report that gives a more detailed
account.

* We implemented two networks for simple object recognition and performed
analysis and simulation experiments. Each of these successfully matched sim-
ple stick figures to P database of models. It was able to find multiple objects
and specializations of objects. One version [41 used an unconstrained optimiza-
tion technique for net dynamics; the other incorporated "Lagrange multiplier
neurons" to implement hard constraints [14]. In each case, the difficult task
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was made tractable by hand coding the input data into relational structures
suitable for matching. The resulting objective functions were quadratic and the
net worked well.

" A more difficult version of the above task was attempted. Again, the idea is
recognize simple stick figures, but now the network, as part of the optimiza-
tion process, had to group input sticks into potentially meaningful relational
structures. This resulted in 5th-order objective functions. While success of the
network was limited, much was learned. Results are reported in [8], [91, and
[6].

" A version involving recognition of 3D objects was completed. This (15] network
recognizes 3D-stick figures from a 2D projection.

" A paper discussing the general approach to object recognition espoused by
us and collaborators was invited for publication by the new journal Neural
Computation (6].

" E-beam multifacetted holograms for optical neural net interconnects were fab-
ricated for an associative memory problem and a winner-take-all problem. The
optical results were compared to results from a simulation program written to
model sources of error in the e-beam scheme. This resulted in some under-
standing of the engineering problems associated with the optical interconnect
scheme. Results and analyses are shown in this progress report.

" In support of the optical effort, we completed a study on performance of outer-
product associative memories. One result 11] showed that versions with self
interconnects perform better than those without; another [2] showed that a
version with positive only interconnects can be made to perform well. Both of
these results have ramifications for optical schemes.

" An additional study on optimal architectures for outer product associative
memories was completed [13]. A universal architecture that makes optimally
efficient use of hardware is proposed in this study.

* Though learning hasn't been a major theme of the work, some progress was
made in initial studies for learning distance metrics in the graph matching
networks mentioned above. In an unrelated study, a fast, general purpose,
supervised learning algorithm based on CMAC models was devised [11] [12).
On a popular test case, it greatly outperforms backprop.

4

9-o



4 Discussion

The work splits into three categories: networks for model matching, optical imple-
mentations, and analyses of associative memory. The optical work was carried out
as a subcontract at the University of Arizona and is discussed in a self-contained
section.

4.1 Networks for model matching

Neural net tasks for visual recognition is often thought of as a variant of some simple
pattern matcher, such as the the Hopfield associative memory or a simple perceptron.
These schemes are limited in two ways: "objects" are represented iconically instead
of in the more efficient manner of relational structures, and there is no provision for
efficiency in search by using notions of hierarchy. Of course, both of these ideas are
common in traditional computer vision, but here, we propose a way of incorporating
these crucial notions into a neural-net paradigm.

We introduce an optimization approach for solving problems in computer vision
that involve multiple levels of abstraction. Specifically, our objective functions can
include compositional hierarchies involving object-part relationships and specializa-
tion hierarchies involving object-class relationships. The advantage of hierarchical
organization is that it makes the search process involved in image interpretation eas-
ier to express and more efficient. The large class of vision problems that can be
subsumed by this method includes traditional model matching, perceptual grouping,
dense field computation (regularization), and even early feature detection which is
often formulated as a simple filtering operation. This raises the possibility of solving
within a single vision system both low-level and high-level problems in a uniform

manner.
Our approach involves casting a variety of vision problems as inexact graph match-

ing problems, formulating graph matching in terms of constrained optimization, and
using analog neural networks to perform the constrained optimization. Figs 1 and 2
illustrate the basic idea for a simple graph matching problem.

Our extension of graph-matching to model-based object recognition involves re-
garding one of the graphs as a "model" graph, which is supposed to represent the
knowledge of shapes within the system, and the other graph as a "data" graph which
is obtained from the current input data to the system. The model-side nodes are
simply called "models" and data-side nodes are called "frames" (denoted F), which
are collections of analog neurons representing parameters of an object (and are de-
noted Fi., where s indexes the parameters of a single frame). The instantiation of
a model in the image is expressed by "turning on" a match neuron Mmj between a
model a and its matched Frame F. We will refer to such a network of frames anI
models as "Frameville". Basic notions of Frameville are discussed in Figs 3,4,5.6

5



Exact Graph Match Via a TSP-like Network

Represent a graph by a sparse binary matrix whose ijth element
is unity if node i is connected to node j, and is zero otherwise. Given
two graphs represented by G,, and gij, introduce a match matrix
Mai, where 0 < Mai < 1, to represent the correspondence between
nodes a and i.

A simple objective function maximizes the number of local con-
sistency rectangles :

E,(M) = - Ga giMaiMj. (1)
0 ii

while other terms reflect the constraint of one-to-one matches be-
tween nodes:

E2(M) = Z( - 1)2 + Z(ZMai- 1)2 (2)

and limit the values of the match neurons to the desired range:

E 3(M) = E f'"c, g-'(x)dx. (3)
ai

where g is a sigmoidal gain function.

Graph matching is performed by a gradient descent procedure
on the combined objective E = E, + E2 + E 3 , or by a constrained
optimization technique involving the introduction of Lagrange mul-
tiplier neurons.

•I I



Exact Graph Matching
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FIG- Z
An illustration of' a graph matching problem
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Introducing Frames

For model matching, GO becomes IN4 denoting part-whole
relationships- among models a and 3. Likewise gii becomes inai
denoting part-whole relationships between data nodes.

The data nodes themselves become "Frames" which represent vi-
sual abstractions in terms of a few parameters. The i'th frame, 1i',

contains "slots" for analog parameters F 8 and May participate in
part-whole relationships (inaij, now variable) with other frames Fj.
The process of dynamically employing a frame to represent an ab-
straction required by data is called "allocating" the frame.

The graph-matching objective E1 (M) again maximizes the num-
ber of consistency rectangles, but consistency now involves the vari-
able ina liniks and model-specific criteria H:

E(M, ina, F) = - INAcinaM,,ijA jH,3 (Fi, F). (4)
a3 ij

i I | I &
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Figure2: Example of F'rameville rectangle rule.(a) Example object, a plane, consists
of parameterized parts fuselage and wings. (b) Shows the rectangle relationship between
frames (triangles) representing a wing and the fuselage of a plane. Circles denote dynamic
variables, ovals denote models, and triangles denote frames. For the plane and wing models,
the first few parameters of a frame are interpreted as position, length, and orientation. (c)
Shows the sibling competition among parts. The match variables along the dotted lines
(M/3,9 and NI 2,7) are suppressed in favor of those along the solid lines (M2,, and A13 7).
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FRAMEVILLE MATH

Objective:

Data and models must be consistent ...

E1 (M, ina, F) = - Z INA,(,inaijM,niMyjHj"(, '). (5)

Constraints:

Unique matches for the parts of an object ...

E INAa Mai - inaijMoj = 0 (6)
a j

inaijMai - INA,M3j = 0. (7)

Unique specialization through discrimination tree ...

Mai - E IS4c, Mzi = 0. (8)

13

M and ina make decisions ...

MoCi(1 - Mai) = 0

ina~i(1 - inaij) = 0. (9)

(or use standard analog gain term.)



Introduction of a Specialization Hierarchy

Indexing into a large database of models may be made efficient
by the introduction of a specialization hierarchy. We index the
models (and the database of metrics Hc ) by introducing a static
graph of pointers IS4,,# to act as both a discrimination network
and an inheritance hierarchy. Note that property inheritance is
automatically achieved by allowing the same frame to match to a
model and just one of its specializations:

Mai - Z IS4_,qMgi = 0. (10)
'6

The additional verification of properties specific to the specialization
is simply expressed as additional model-specific constraints involv-
ing the parameters.
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The incorporation of a compositional hierarchy and a specialization hierarchy on
the model side is achieved via graph-arcs called INA links and IS4 links respectively.
The objective function includes terms representing a simultaneous match of a model
to an object (on the data side) and the parts of the model to parts of the object in a
consistent fashion. An objective function may be inherited through the IS4 links from
a model to its specializations and there may be an incremental objective function for
each of the specializations. Numerical parameters are represented by using analog
neurons and the verification of metrical relationships involving these parameters is
achieved by corresponding consistency terms in the objective function.

In order to perform perceptual organization, the data-side compositional hierar-
chies must be dynamic. To achieve this we introduce dynamic ina links on the data
side. The ina links connect more and less abstract frames, and their evolution cor-
responds to a search for a perceptual organization consistent with the model graph.
Specialization is implicitly achieved by the simultaneous match of a frame to a model
and to one of its ISA specializations.

The next few figures show experimental results. We note that the "Stickville"
simulations of figs 7 and 8 do not involve grouping the input sticks into data side
graphs; this is done by hand to make the task easier for the network. The resulting
objective functions are quadratic. As seen in figure 8, data in the form of a simple
stick figure of a jet is presented to the network. Models of mammal, plane, jet are
stored. Both data and object relations are encoded in the connection strengths of the
network; in particular HO#(F, F) equals a number measuring the quality of match
of data items i and j given that i is identified with model a and j with 0. Shown is
the state of the match matrix at intermediate and final states. Note that both plane,
and its IS4 specialization (jet) have been found.

The next series of experiments is depicted in Figs 9,10,11 and is described in
extensive detail in [8]. The parameter evaluations are not precomputed as before,
but are computed dynamically. Translation invariance is achieved by using a specified
form of the metric. One unsurprising result is that the network must be given a hint
in the form of an initial state in which an abtraction frame containing the parameters
of a main part is already successfully matched.

Extensive experimentation and analysis continues with this domain. A central
theme that is pursued here is the following: How can the database be organized so
that the search process is more successful? These and other aspects are duscussed in
[8].

The networks discussed here were hand designed in that both the model base and
the definition of the match metric H1 were chosen in an ad hoc manner. It may be
possible to improve the performance of a Frameville network by supervised learning.
Learning the database is quite difficult, but improving HJ1 for greater discrimination
may be possible. A possible strategy would be to present the network with examples
of fully matched models (all match variables set). The match metric H'15 is then

6



Experimental Results: Stickville

We attempt recognition in Stickville, a simple domain of con-
nected assemblages of linear "sticks". There are severe restrictions
here:

" The data groupings are precomputed, so inaij are constant.

" The ina matrix represents a tree. The links are undirected.

* Parameters are precomputed. For an attached pair of sticks
(inaii = 1), we use relative size, angle, and location of attach
point.

Therefore, the only dynamic variables are the match neurons - i
and the objective function is quadratic.

The figure below shows experimental results.

FIG-7
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Stickville match matrix after 28 time steps. The circles represent the dynamic variables
whose value is encoded by the radius of the shaded portion. The different columns represent the
different data sticks, and the different rows represent different models. The model-base depicted
consists of plane, jet, mammal and their parts, and a root model. The data consists of two jets.
The unconstrained (Hopfield) update was used.
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Stickville match matrix achieves the correct fixed-point after 70 time steps. Note that
a stick matches to a model and all of its generalizations (more than one meuron on in a column)
and that both the jets have been found (more than one neuron on in a row).The unconstrained
(Hopfield) update was used. F I - V



Experimental Results: TLville

We experimented with the full Frameville machinery in a charac-
ter recognition task. The model base is a two-level compositional
hierarchy with characters ("T" and "L") composed of unit-length
segments in the manner of a standard LED display.

" Frames contain three slots: the x, y, 0 coordinates of the segment
which the frame represents.

" Abstraction in TLville: High-level frames (those matched to an
entire character) contain slots for coordinates of a designated
main part.

" Terms in H'O like (xi - xj - Axa'1) 2 enforce translation invari-
ance through analog computation. Other invariances may be
similarly implemented.

" No ISA specialization mechanism.

* To augment equations 6 and 7, we add penalty terms
) MaiMci E E MgjMo j , E E inaijinaiij. (11)!

7a a'#c 03 i300 ii i'#i

Thus the dynamic variables are M, ina, and F and the resulting
objective functions are of order five.

The following figures show experimental results.

rt&9
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(a)Input data consists of unit-length segments oriented horizontally or ver-
tically. 'The task is translation-invariant recognition of three segments forming a"T
junction (e.g. sticks 1,2,3) or an "L" (e.g. sticks 5,6,7) amid extraneous noise sticks.
(b)Structure of network. Models (represented by ovals) occur at two levels. 114 links
are shown for a "T". Each frame (represented by a triangle) has three parameters: two
position coordinates and one orientation coordinate. Also shown are match and ina links.
The bold lines highlight a possible consistency rectangle.
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Match network. The value of each dynamical variable is displayed as the
relative area of the shaded portion of a circle. The matrix 1J.3j indicates matches between
models and frames at the low level; and M,,; indicates matches at the high level. The
ina matrix indicates grouping of ten low-level frames into three high-level frames. The
parameters of the high-level frames are displayed in the matrix Fp of linear analog neurons.
The parameters of the low-level frames are held fixed and are not displayed. (a) Initial state
of network: All neurons set to small random values except those corresponding to matchin
of main parts. (b) Final state corresponds to successful match of the two junctions a:ld
their parts.
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changed. For example, it may be desirable to make its value zero or negative for
positive training examples and have it assume a large positive value for negative
examples. The measure governing the change of H might be the separability of the
clusters of energy values reported by the analog computation term for positive and
negative examples. The match metric itself could be modified by representing H in
parameterized form and descending in the parameter space.

4.2 Work on associative memory and learning

The model matching networks described above differ from the more familiar asso-
ciatve memories well known to neural netters, but since associative memory serves
as a test problem for optical implementaions, several problems in analysis presented
themselves. In addition, we continued some previous work in new types of associative
memory.

It turns out that a Hopfield style ACAM (Associative Content Addressable Mem-
ory) may be implemented optically as projection of a binary input state onto a set of
stored memories to obtain a set of inner products, followed by summation of stored
memories weighted by the innner products, followed by thresholding. With this kind
of optical architecture, it turns out to be convenient to use connections that are
positive only instead of bipolar, and to not restrict onesself to eliminating self con-
nections from the network. These two resrictions (bipolar nodes, non self connected
nodes) are present in the Hopfield model, but in two papers [1) [2] we show how to
remove them. In particular, we show through statistical arguments that the model
with self-connected nodes actually works better than the one with without these, and
that an all-positive network is possible if the threshold point is selected judiciously.

While the outer-product memories have been well studied and implemented opti-
cally, there is reason to prefer alternative models that use simple template matching
in conjunction with a layer of internal decision units which compete to perform a
winner-take-all (WTA) function. We refer to this a a unary model. There are 3
reasons for our interest: WTA networks are modules of the model-match networks
described earlier, they constitute an implementation challenge for the optical effort
(see next section), and unary models are interesting in their own right.

With this latter reason as motivation, we completed a study of unary models
[13] and showed the following: We present a universal architecture for standartd
auto-associative memory models which makes optimally efficient use of hardware.
This architecture is described by a bilinear energy functiom. Bot outer-product
and unary models can be viewed as special cases of this unversal architecture. The
universal architecture uses only the minimal number of binary connections required
by information theory to encode the stored memories. For higher order outer product
memories, the need for large numbers of internal "product units" is eliminated.

In the previous section, an approach to learning in Frameville was discussed but

7



no committment to a given learning algorithm was mentioned. Reseach on learning,
though somewhat peripheral to the immmediate goals in this contract, was con-
ducted. In [I1] (121, a learning algorithm in whuich a system learns to approximate
mappings by constructing an interpolating lookup table on a lattice of points in the
input space.

8



4.3 Work on optical implementation

This section describes work on optical implmentation performed as a subcontract
at the University of Arizona. This progress report was written separately by the
subcontract investigators. Figure numbers refer to figures within this report.

9



AFOSR Progress Report

Object ive:
The objective of this portion of the research proqram is to in.,estizate
and develop the implementation of neural-net,_jork architectures via opt-
ical teohnoloqq. The stren.qth of optics for this application lies in its
ability to perform communication, and so the primarLi effort is directed
at implementation of the massive interconnections required of' neural
network.

Approach:
The qeneral approach to rnodel-based recognition of ,vlisual patterns is
that of optimization via a neural netw#ork.. In the simplest for-mu lation of
this t.qpe of problem, the interconnection strernqths are known and fi:oed.
Thus, it is feasible to implement the interconnections via a fixed nona-
daptive structure. In terms of optical imnlementation, this fi;-d struc-
ture is easier to realize than an adaptive one., and so the present
effort is directed at e;x0loration of the capabilies and limitations of
f'i >:d optical interconnects. A fundamental issue concerns the number of
nodes and the nurrber of interconnections that will be required for-
realistic problems. H.e have chosen to consider nodes la!ed out on a 2-1
array to maximize the number of nodes that can be realized. The asso-
ciated 4-D interconnection rnatrix is implemented via spatial rnultiple::-
ing, essentially producin.q a 2-D arr-aq of 2-D interconnections all
ecoded on one large 2-l media.

Two methods of optical interoonnection are being- invest i gated, multif a-
cetted holoqrams and multichannel incoherent imaqinq sqstems. In the
former, .a holograr, hereafter referred to as a subholoqram, is dedi-
cated to each node to encode the connection pattern from that node to
.all the other nodes in the system. A 2-D array of these subholoqran-s
forms the composite hologram. The use of Fourier transform holoqrans
allo.,.,s a simple encoding, where commun, ication to a particular node is
associated with a particular spatial frequency (grating) in the subholo-
gram and is independent of the subhologram's spatial position in the
composite holo.q'.am. The holoqram can be designed via any of a number
of binary encoding schemes and is fabricated via e-beam lithography.

In the multichannel imaging system approach, there are ti.Lo qeometries.
In one, like the subholoqram idea, a subtransparerc._q encodes the con-

nection pattern from a particular node to the entire node array, and an
arraq of these, one for each node, meshed together in a 2-D arra4
forms the composite transparency. An array of imaging s-stems, o:ne for
each node., project the individual subtransparencies to the common nod-,,:e
input plane. This array of imaging systems can be implemented eithet-
via a lenslet arraq or via a simple shadow.--casting optical systen. In
the other geometry, the multichannel imaging system (lenslet arra'..,
forms a spatially replicated imaqe of the node arraq. Each subtranspar-
enc1 encodes the connections from all the nodes to a particular node.
Again an array of these subtransparencies forms the composite tran-
sparency. Integration of the light emerging from a subtransparenc' rep-
resents the value of' a node input.

Implementation of the nonlinear node function directly. via optics is ,:it-
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ficult. A dedicated electro-optical node plane.. consisting o" an array, of
optical detectors., nonlinear arnplif'iers, and light sources, appears to be
the best approach. The light sources can be either directly4 driven laser
diodes or a spatial light modulator. Difference amplif iers can be inor-
porated in the electronic chair if bipolar signals are r equired. This
type of structure is compatible with any of the optical interconnection
methodologies bein. considered. In our work.. the node function is per-
formed via video detection, digital processin of the digitized '..'ideo

signal, and displaq.4 on a video monitor. For holographic interconnection,
a liquid crystal light valve is used to convert the video displaA into a
coherent amp Ii tude-modu I ated plane--ia,.,e.

Accornp Ii shrnents:
A simple associative memory problem has been defined to test the oper-
ation and performance of the holographic interconnection method. Three
states, an A, a B., and an , are stored in a simple autoassociative
menory structure. The node field consists of" an :.t arraq of binary
(0,1) valued nodes. The connection hologr.ar, consists of an Os _ array of
subholograns.. each encoding the 64 interconnections from its node to
the other nodes. Networks Lith both bipolar arid unipolar connection
strengths were investigated. A detailed statistical analysis reveals that
a sy-stem w1ith unipolar inter,:orneotions can actually performrr better
than one with bipolar interconnections ,see preprint "Statistical Perfor-
mance of Outer-Product Associativye Memory Models" submitted to Applied
Optics).

A winner-take-all (lTA) network was also designed. This network finds
the maximum of 16 analog i iputs. Again an : field of nodes is used.
Si ,.een nodes are used as input nodes, si-.::teen are used as output
nodes, and the rest are u sed to represent the result of tlwo--input con--
parisons. Ideally, the max:imum analog value should appear on the cor-
respond!ng output node and all other output nodes should be zero. The
interconnections for this type of network are sparse and consists of'
strictly +1 and -1 connections. On the other hand, the analog node values
and the interconnection strengths are required to be verq accurate for
proper functioning of the network. These two problems, the associative
rremor._ problem and the NTA problem,. place very different requirements
on the network hardware.

A hologram was designed and fabricated to implement the interconnec-
tions of the two network problems described above. There are several
steps involved in designing the hologram. For bipolar connection pat-
terns the connection matrix is split in two parts., the positive part ard
the negative part. Each must be encoded in a seperate holo-gram, tho
positive part directly and the negative part w-ith a sign reversal so th-
it too is positive. The unipolar connec:tion pattern will be generated b,_
the hologram as an optical intensit.. distribution in the output plane oft
the optical system. The hologram, however, produces an optical ampli-
tude in the output plane. The square root of the connection pattern e
the magnitude that should be produced. The phase, however, is arbitr Er'-4
and is a degree of freedom inherent to the design process. The hologr Er,
transmission should encode the Fourier transform of the complex opti, :-1
amplitude in the output. This Fourier transform is in kgeneral a compte -
'..alued function. The hologram transrmission, howe..er, must be birarq-
valued if it is to be fabricated b.y e-beam'- lithography_. A number of
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standard techniques exist for this encoding process. All essentially
conv,..ert the complex:: function into a real function by spatial carrier
modulation., convert the real function into a positive real function by
addition of a bias, and encode the sampled magnitude of the positive
function by area weighting of the transnissive portion of the hologram.
The hologram produces the desired result in a spatially offset region of
the output plane with a large on axis bias term. Our particular hologram
was encoded as a bin-ary transmission pattern using a technique
described by Dallas'

One of the major issues for optical interconnects is the achievable
accuracy. As a means of inv.estigating this issue., a number of indi,.,idual
test subholograms where also fabricated on the e-beam mask. One of the
test holograms encoded the connect i or pattern dipicted in fig. 1. This
connection pattern was used extensively in evaluating the performrance
of the hologram.

The interconnection pattern produced by_ a computer-generated hologramn
is nev...er perfect. All encoding methods result in some degree of' error,t-,
the resulting connection pattern. Also, the spatial resolution of the e-
beam system sets a l irnit to the dynamic range that can be achieved via
the area encoding. This too affecwts the accuracy of the result. The
phase function of the optical amplitude., chosen during the hologram
iesign process, influences the distribution of energy in the hologram
and the effective utilization of the limited dynamic range. Holograms
with both zero phase and random phase were encoded. Very severe
problems can result when the finite e.xtent of the hologram c.uses a
smearing in the output plane. With random phase codin.. the smearin-

can cause interference effects that lead to large error. The smearing
effect also causes the energy from the strong central bias to spread
into the -area where the interconnections are being made. The optical
distribution in the output plane produced by the zero phase and the
random phase holograms are shown in fig. 2a an 2b respectively. Neither
result is particularly good. Clearly, there is a problem Lwith the smear-
ing from the central bias. The random phase hologram produces a higher
diffraction efficiency but at the e:Kpense of increased error.

Computer simulation of the hologram performance corroborates the
story told above. The computer simulation wL'as done by an exact Fourier-
transform of the computer-generated hologram. A sampled ,.'ersion of
the output is shown in fig. 3, where fig Sa corresponds to the zero
phase hologram and fig. Sb to the random phase hologram. These can be
compared directlq to the results in fig . 2; Cod agreement is noted. This
is encouraging for it allows the computer simulation approach to be
used to test alternative hologram designs without resort to e.xensive
and time-consuming fabrication. For example., one solution to the prob-
lern of smeared light from the on-axis bias light is to make a binary
phase hologram from the binary transmission hologram. A binar. phase
hologram has two transmission values of I and .n rather than 1 and 0. It
there are equal areas of the two transmissions, the on-axis bias siqn
is identically zero. A simulation of this hologram produces the result
sholwn in fig . 4; a clear improvement o.,er the binary tranmission case

1 . B . P. Fri eden, ed. , The Computer i n Opt i -
cal Research, Spri nger-Ver ag, 1980.
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We h. ,...e attempted to ri-,ake b i ary phase ho Iogrars k:' b Ib.acy- inc1 phoo-
!g.aph i,: ccopies made by ciritact p:,rinting. This appro-ach has n'ot rl-iei 1I0h

r-uch suc::ess. It is very diff1:L I..., Lii th bleached hoto-rar,-s., to obtain
uniform phase iridependeret of spatial frequer:y.

The ftull associative memory netw.otork iw.as atteriIpted using the electro-
optic node plane and the holographic interconnect. The errors in the
connectiorn pattern resulted irn poor performn.arice for the associati...,@
rm-iermiory problem. The encoded states of the netw.Jork were not fully
stable, though the patterns oere s-:table enough to produce reconizble

characters. Hle are still investigatinq the behaior of these opti cally_-
interconnec:ted netljorks.

Future Directions:
Several areas will be in,...estig.ated in an attempt to improve the perfor-
mance of the holographic interconnects. podI zat ion of the subh ihoogr..as
will be explored as a means of confining the ener.gy and reduoink the
deleterious effects of smeari nq. AIlso, increasig - the seperation of the
nodes and the seperation of the inter .:onnect region fromi- the central
bias care be used to imi-prove p:erformance. There is an obvious trad-eoff
here between the accuracy of the interconnection anid the numrber of' in-
terconnects that canrb realized. The issue of accuracy in) netw-ork-0 in-
tercornections is beirg studied theoretically in an attempt to deline.ate
exactly what the accuracy requirements are for v...arious kinds of neural
networks.

Further' investigation of' the what phase function should be specified for
the oupUt anplitude uill be done. It is c:ert.ainly possible that some det-
erministio -phase fureotion is ,preferable to either the zerco phase of the
random phase solutions. He LJill .also e>:.r:l.,or-e the perforriance cif V.atic'LOs
hologram encoding procedures icludirig the Lohmnarne technilque, the Lee
technique, and the Burch technique. S related idea is to pose the encod-
ing as an optimization problem and e-,ploy a technique such as simulated
-arnealin' in an attempt to' find the "bTest" solution. This approach might
be considered as a network solution to the problem of defining a holo-
graphic interconnect for another retwork problem.

All of the above inv...,estigations Lill be do-ne through computer sirjUlati,_-n
Whe ar optimal approach is defined., a reasonably4 laroe netwiork :oire-
sisting of perhaps 64.,%164 nodes will be -attempted.

Another goal will be to in,..-'sti!gate methods of pnoducir'; more aocurate
binary phase hologramns. A number of techniqLUes f'or this exist. We Lii ill
in-,ves i gate a photo Ii thographic technique, -a photol i thogr-aphic techriqL4e
wiii th vacuum- depos.it.ion of a dialectr-i,: coatirg, and., if possible, photol-
thc, y-.aihy Lii.th, reacti.e ion etohit,;.

In.estigation of the ireccheerert optical interconnection methods will alz,-,
be done in the coming ylear. A high-resolution film writer using laser
so.anning technol0ciy .will be a,.,ailable -shortly. Pr'oduction of tranlsp_-ar-
ency masks via this instrument should be relativel. staightforward.



Figure Captions:
Fig. 1. Pattern of interconnection ofn the test SLbIholoIqrarm. The cornec-
tion to the node in the lowier left has a v,..alue of 5; all other connec-
tions are either 0 or 1.

Fiq. 2. Holor-aphio interconnection pattern of the test hologrami - zero
phase (a) and random phase <b). Note the se,...ere spreadirg of the zero
bias light into the inter-connection region.

Fig. S. Calculated inter-connetion pattern of the test holograms - zero
phase (a) and ran-dom- phase (.3). Good agreemtent w, ith the optic all!y gen-
erated interconnection patterns (f'ig. 2) is noted., apart from the over-all
photogr aphi ci intensi t.._.

Fi 9 . 4. Calculated interconnection pattern of a binarq phase hologram.
Comparison to the results of the binary amplitude hologram (fig. Sa)
reveals greatly reduced error from the bias. light and improved diffrac-
tion efficienco.
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* J. Moody and C. Darken, "Fast Learning in Networks of Locally-Tuned Pro-
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* J. Moody, "Optimal Architectures and Objective Functions for Associative
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